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ABSTRACT: Phased-array radar (PAR) technology can potentially provide high-quality clear-air radial velocity observa-
tions at a high spatiotemporal resolution, usually ∼1 min or less. These observations are hypothesized to partially fill the
gaps in current operational observing systems with relatively coarse-resolution surface mesonet observations and the lack
of high-resolution upper-air observations especially in planetary boundary layer. In this study, observing system simulation
experiments are conducted to investigate the potential value of assimilating PAR observations of clear-air radial velocity
to improve the forecast of convection initiation (CI) along small-scale boundary layer convergence zones. Both surface-
based and elevated CIs driven by meso-g-scale boundary layer convergence are tested. An ensemble Kalman filter method
is used to assimilate synthetic surface mesonet observations and PAR clear-air radial velocity observations. Results show
that assimilating only surface mesonet observations fails to predict either surface-based or elevated CI processes. Assimi-
lating clear-air radial velocity observations in addition to surface mesonet observations can capture both surface-based and
elevated CI processes successfully. Such an improvement benefits from the better analyses of boundary layer convergence,
resulting from the assimilation of clear-air radial velocity observations. Additional improvement is observed with more fre-
quent assimilation. Assimilating clear-air radial velocity observations only from the one radar results in analysis biases of
cross-beam winds and CI location biases, and assimilating additional radial velocity observations from the second radar at
an appropriate position can reduce these biases while sacrificing the CI timing. These results suggest the potential of assim-
ilating clear-air radial velocity observations from PAR to improve the forecast of CI processes along boundary layer con-
vergence zones.
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1. Introduction

Convection initiation (CI) commonly refers to the process
that air parcels penetrate their level of free convection and
buoyantly accelerate upward to generate a precipitating
updraft, and form deep, moist convection (Markowski and
Richardson 2010). To better understand and predict precisely
when, where, and how deep convection initiates, several field
campaigns have been conducted (Weckwerth et al. 2004;
Browning et al. 2007; Geerts et al. 2017). The International
H2O Project (IHOP_2002) field campaign was conducted
over the U.S. southern Great Plains with small local topo-
graphic variations from 13 May to 25 June 2002. One of its
research components is CI (Weckwerth and Parsons 2006).
There were total 112 CI cases during IHOP_2002. About one-
half of these cases were triggered along surface-based conver-
gence lines, and the other one-half were elevated initiation
episodes with source air located at about 900–600 hPa. The
surface-based cases occurred mostly during the afternoon and
evening, and the elevated initiation episodes mostly occurred

at night (Wilson and Roberts 2006). The Convective Storm
Initiation Project (CSIP) field campaign was performed in
southern coastal region of the United Kingdom during the
summers of 2004 and 2005. During the CSIP field campaigns,
almost all the convective storms were initiated in the plane-
tary boundary layer (PBL), and only one case originated
above the PBL (Browning et al. 2007). The Plains Elevated
Convection at Night (PECAN) field campaign focused on
nocturnal elevated convection over the U.S. central Great
Plains in 2015. Improving the understanding and prediction of
nocturnal CI is one of the primary scientific objectives of
PECAN (Geerts et al. 2017; Weckwerth et al. 2019).

The triggering mechanisms for CI were better understood
based on the results from the field campaigns (Wilson and
Roberts 2006; Browning et al. 2007; Weckwerth et al. 2019)
and many other previous studies (Koch and Clark 1999;
Fovell 2005; Kang and Bryan 2011; Kirshbaum 2011; Lock
and Houston 2014; Hill et al. 2016; Gasperoni et al. 2018;
Degelia et al. 2018, 2019, 2020; Wang and Xue 2018; Huang
et al. 2019; Parsons et al. 2019). Lock and Houston (2014)
examined 55 000 CI cases and found that convergence and lift
are the most significant parameters that effectively discriminate
between initiation and non-initiation. A lower-tropospheric
convergence mechanism for CI commonly includes frontal
boundaries (e.g., Koch and Clark 1999), drylines (e.g., Hill et al.
2016; Gasperoni et al. 2018), sea-breeze fronts (e.g., Fovell
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2005), cold pool gust fronts (e.g., Wilhelmson and Chen 1982;
Huang et al. 2019), undular bores (e.g., Parsons et al. 2019),
and horizontal convective rolls (e.g., Weckwerth 2000; Wang
and Xue 2018), orographic circulations (e.g., Kirshbaum 2011),
elevated convergence zones (e.g., Reif and Bluestein 2018;
Weckwerth et al. 2019), and so on. The inhomogeneous heat-
ing of the underlying surface resulting in mesoscale circulations
also can trigger CI (e.g., Kang and Bryan 2011).

A few studies have investigated the impact of assimilating
different kinds of surface observations on the numerical pre-
diction of CI (Sobash and Stensrud 2015; Madaus and Hakim
2017; Gasperoni et al. 2018; Degelia et al. 2018). Sobash and
Stensrud (2015) revealed that assimilating high-frequency
(every 5 min) mesonet surface observations in addition to
conventional surface observations improved CI timing and
location forecasts in a dryline case relative to the experiments
that only assimilate conventional surface observations. The
improvement was primarily due to the fact that the rapidly
evolving mesoscale features are accurately captured by high-
frequency mesonet data. Gasperoni et al. (2018) found that
assimilating high spatiotemporal resolution nonconventional
surface observations can capture the small-scale information
in the dryline structures that cause localized enhanced conver-
gence and correct the forecast of CI location in a dryline case.
Madaus and Hakim (2017) used a series of observing system
simulation experiments (OSSEs) to determine that assimilating
at least 4-km-and especially 1-km-density surface observations
can produce skillful and reliable storm-scale CI forecasts. Fore-
casts starting before cumulus formation lack CI forecast skill,
however. Degelia et al. (2018) showed that CI was successfully
forecast when assimilating in situ observations to strengthen
low-level convergence and to enhance buoyancy.

Recently, some studies tried to explore the benefits of
assimilating less-traditional upper-air observations to improve
numerical prediction of CI (Keclik et al. 2017; Coniglio et al.
2019; Degelia et al. 2019, 2020). Assimilating temperature and
dewpoint profiles retrieved from Atmospheric Emitted Radi-
ance Interferometer (AERI) and horizontal wind profiles
retrieved from Doppler lidar in addition to conventional
observations can improve the short-term forecasts of the initi-
ation and early evolution of thunderstorms (Coniglio et al.
2019). Degelia et al. (2019, 2020) determined that assimilating
a mesoscale network of surface and profile observations col-
lected during the PECAN field campaign can improve the fore-
casting of the timing and location of a CI event. However,
Keclik et al. (2017) found that no statistically significant improve-
ment in CI forecast skill was attained by assimilating meso-a- to
synoptic-scale observations at mid- to upper troposphere col-
lected during the 2013 Mesoscale Predictability Experiment
(MPEX), likely because the lower-tropospheric environment
modulating CI was not well captured by targeted observations.

Although the understanding and prediction of CI have
been improved given the past efforts, challenges for CI pre-
diction remain. CI is the result of the interactions among dif-
ferent scales including synoptic, meso-a, meso-b, meso-g, and
microscales (Keclik et al. 2017). Precise prediction of CI
requires a numerical model to capture these multiscale inter-
actions accurately, especially those interactions within PBL.

Additionally, Reif and Bluestein (2018) demonstrated that
precise forecast of CI timing and location is especially chal-
lenging for highly localized events in the warm season. This
challenge is partly due to the lack of high spatiotemporal reso-
lution observations that are critical in sampling before and
during CI.

Current operational observing systems lack high spatial
(horizontal/vertical) and temporal resolution of atmospheric
observations in the PBL (NRC 2009), which inhibits the
improvement of CI forecasts. Although the National Weather
Service (NWS) radiosonde network can provide high-quality
vertical profiles of temperature, humidity and winds, it has a
mean spacing of ∼350 km and temporal resolution of 12 h.
Mesoscale monitoring networks, such as the OklahomaMesonet,
can provide observations at a spatial resolution of ∼30–50 km
every 5 min. However, these atmospheric observations are
only near the surface and are still sparse for sampling many
processes that affect localized CI. While satellite sensors gen-
erally can provide observations with relatively good horizon-
tal and temporal coverage (Balsamo et al. 2018), their ability
to sample the PBL is limited. Recent studies (e.g., Koch et al.
2018; Leuenberger et al. 2020) addressed the potential value
of high spatial and temporal resolution PBL observations
from ground-based remote sensing (e.g., lidar) systems and
unmanned aerial vehicles (UAV) for forecasts of CI and thun-
derstorms. However, these observation systems lack opera-
tional maturity so far.

Currently, the Weather Surveillance Radar-1988 Doppler
(WSR-88D) observations have been used successfully in
convective-scale analysis and prediction due to their ability
to sample convective storms at a high temporal and spatial
resolution (Sun et al. 2014; Huang et al. 2020). However,
WSR-88D data have limited utility before and during CI,
because the radar is not sufficiently sensitive to capture avail-
able information especially in clear-air regions (Markowski
et al. 2006; Huang et al. 2020). In contrast, the next generation
phased-array radar (PAR) with the rapid and flexible scan-
ning capability can potentially and partly fill this observational
gap (Zrnić et al. 2007). PAR can sample the pre-CI environ-
ment using the high-sensitivity scanning mode and provide a
full volume scan of clear-air radial velocity at a high spatial
resolution and temporal resolution less than 1 min (Zrnić et al.
2019). Huang et al. (2020) indicated that assimilating PAR
clear-air radial velocity observations can improve the forecast-
ing of supercell intensity and track. Zrnić et al. (2007) pro-
posed that assimilating these high spatiotemporal resolution
data from clear-air boundary layer may improve the predic-
tion of CI timing and location. As discussed earlier, current
operational observing systems can relatively easily identify
meso-b-scale (20–200 km) boundaries. However, CI typically
occurs along only limited segments of such boundaries. The
timing and location for such CI events are mainly associated
with the meso-g- (2–20 km) to microscale phenomena that
determine local PBL lifting (Markowski et al. 2006; Keclik
et al. 2017). Given the capability of its clear-air mode, the
next generation PAR is expected to capture at least part of
the meso-g- to microscale features responsible for CI. In sum-
mary, the high spatiotemporal resolution volumetric PAR
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clear-air radial velocity observations are expected to at least
partly fill the gaps in the current operational observing sys-
tems. Such a gap-filling effect can potentially improve the pre-
dictability of both surface-based and elevated CI. To our
knowledge, there are no peer-reviewed published research
investigating the potential benefits of assimilating PAR clear-
air data on CI forecasts. The primary goal of this study is to
address the following scientific questions:

• What is the impact of assimilating future PAR-like clear-
air radial velocity observations on surface-based CI predic-
tion relative to the current surface mesonet observations?

• How can assimilating future PAR-like clear-air radial
velocity observations impact the forecast of elevated CI?

• Do the benefits of assimilating PAR clear-air radial velocity
observations on CI forecasts depend on the data assimila-
tion (DA) frequency?

To answer these questions, a series of OSSEs with perfect-
model assumption using two typical types of CI, surface-based
and elevated CI cases, are designed and performed. The
remainder of the paper is organized as follows. Section 2
describes the simulation configuration, simulated observa-
tions, and experiment design. Section 3 presents the results
obtained from the experiments, and a summary is given in
section 4.

2. Method

This study is an early study to examine the impact of assi-
milating PAR clear-air radial velocity observations on CI
forecasts. OSSEs with the perfect-model assumption are con-
ducted to explore the potential value of assimilating future
PAR clear-air radial velocity observations to improve forecast
of CI along the PBL convergence zones. Synthetic surface
mesonet observations and PAR observations are generated
by adding observation errors to the truth run. Idealized
surface-based and elevated CI cases are designed sepa-
rately with a perfect model assumption. These idealized
OSSEs allow the understanding of the impacts of the PAR
data for different mechanisms individually. Such an isolation
will be difficult to achieve in the real model and real data
experiments or OSSEs generated with the real numerical
weather prediction (NWP) model where the simulated atmo-
spheric systems are complicated and contain various mecha-
nisms that are hard to separate. Similar perfect-model and
idealized-case OSSEs were used in early published studies (e.g.,
Kong et al. 2018; Pan et al. 2018; Bachmann et al. 2019; Liu et al.
2019; Schröttle et al. 2020; Taylor et al. 2021; Zhao et al. 2021).

a. Nature run

The truth or nature run is created using the Weather
Research and Forecasting (WRF) Model, version 3.4.1, with
the idealized run configuration. The quarter-circle hodograph
environmental sounding used in Huang et al. (2020) is
adopted for the homogeneous initial condition in the truth
run. Open boundary conditions in both x and y directions are
used for the lateral boundary condition of the truth run. The
model domain is 200 km 3 200 km with 1-km horizontal grid

spacing. A stretched grid is adopted in the vertical direction
with an averaged vertical grid spacing of 500 m and a model
top at 20-km height. The physics parameterizations used
in truth run include MM5 Monin–Obukhov surface-layer
scheme (Jiménez et al. 2012) and Thompson microphysics
scheme with five cloud species (Thompson et al. 2008). A
1.5-order turbulent kinetic energy (TKE) closure scheme
(Skamarock et al. 2008) is used to calculate the horizontal and
vertical subgrid-scale mixing. Longwave radiation, shortwave
radiation, land surface, PBL, and cumulus schemes are not
activated.

A similar method to that described by Morrison et al.
(2015) is adopted to initiate convection by applying forcing to
y winds during the early integration. Convection is initiated
by convergence at lower levels in the uniform thermodynamic
environment. As discussed in the introduction, the current
operational observing systems, with relatively coarse resolu-
tion surface mesonet observations and the lack of high tempo-
ral and spatial resolution upper-air observations especially in
planetary boundary layer, severely limit surface-based and
elevated CI forecasting. The high spatiotemporal resolution
volumetric PAR clear-air radial velocity observations can
potentially fill the gaps. Meanwhile, projections of u, y, and
w winds in the radar radial direction vary as a function of ele-
vation angle. It is thus worth exploring whether assimilating
radar radial velocity observations can capture the enhanced
convergence zone, one critical mechanism for CI, at different
height levels. Therefore, two cases, surface-based and ele-
vated cases, with different maximum convergence layers will
be investigated here. The forcing term added to y winds is pre-
scribed as
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where a 5 0.05 m s22 is the maximum forcing amplitude;
x and y are distances (km) perpendicular to the left and bot-
tom domain edges, respectively; xc and yc are the horizontal
location of the domain center; z is height (km); zc 5 0 and
zc 5 1.5 km (referring to the height of maximum horizontal
convergence shown in Fig. 6 in Weckwerth et al. 2019) for the
surface-based case and elevated case, respectively; xr 5 yr 5
zr 5 10 km; and

g 5

1, t# 600

1 2 (t 2 600)=60, 600 , t , 660

0, t$ 660

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ (2)

with t being time (s). Equation (2) means that the forcing
term is added from t 5 0 to 11 min. The forcing term is added

to y winds only when {[(x2 xc)=xr]2 1 [(y2 yc)=yr]2}1=2#1,
indicating that the convergence belongs to meso-g scale.

The output data from the truth run at 1-min intervals are
used to examine the CI process. In this study, CI is defined as
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the first occurrence of composite radar reflectivity (CREF,
the column maximum radar reflectivity) exceeding 35 dBZ,
which is often used in previous studies (Trier et al. 2015;
Gasperoni et al. 2018; Abulikemu et al. 2019). From the
CREF evolution of the truth simulation (Fig. 1), the first CI
for surface-based and elevated cases are at t 5 16 and 20 min,
respectively (Figs. 1a1,c1), followed by the convection. The
spatial scale of both types of convection reaches ∼20 km along
the west–east axis at t 5 20 and 30 min, respectively
(Figs. 1a3,c3). From the cross sections of horizontal wind
divergence, CI processes are associated with near-surface and
upper-level horizontal convergence in surface-based and ele-
vated CI cases, respectively (Figs. 1b1,d1), as designed in this
study.

b. Synthetic observations

1) SIMULATED SURFACE MESONET OBSERVATIONS

The synthetic surface mesonet observations are generated
from their corresponding fields of truth run. There are five
surface observation types including surface pressure, 10-m
u wind, 10-m y wind, 2-m temperature, and 2-m specific
humidity. The Oklahoma Mesonet can provide surface obser-
vation data at a spatial resolution of ∼30–50 km and a tempo-
ral resolution of 5 min (McPherson et al. 2007). Thus, surface
observations are simulated at 30-km horizontal spacing every
5 min. Following Madaus and Hakim (2017), observation
errors of surface pressure, 10-m u/y winds, 2-m temperature,
and 2-m specific humidity are drawn randomly from a Gaussian
distribution with a zero mean and a standard deviation of 1
hPa, 1 m s21, 1 K, and 1 g kg21, respectively. This design
ensures that the observation innovations (observation minus
model states mapped to the observation locations) are not zero
for surface mesonet observations.

2) SIMULATED PAR RADIAL VELOCITY OBSERVATIONS

Two assumed radars are located to ∼25 km south and east
of the domain center, respectively (Fig. 1). Such a placement
of radars is based on the following justification. To assure the
accuracy of derived winds, clear-air radar echoes from partic-
ulates (e.g., insects) or from refractive index turbulence
observed in the vicinity of radar (within 50-km range)
are often used (Wilson et al. 1994; Kollias et al. 2018). A sin-
gle radar only observes winds in the radial direction and
therefore cannot measure cross-beam winds. With the largest
elevation angle of 19.58 in this study, radial wind represents
mainly horizontal winds and limited w wind (Lippi et al.
2019). The south radar is mainly used to capture more y com-
ponent of horizontal winds, and the east one is mainly used to
capture more u component of horizontal winds. Two closely
located PARs seem to be unlikely for the future PAR net-
work due to the high cost. However, it is still worth examining
the effects of the viewing angle geometry. It should be noted
that this study is the first to explore the potential benefit of
assimilating PAR clear-air radial velocity observations to CI
forecasts. Therefore, the goal is to offer a proof of concept
rather than to inclusively examine the sensitivity of all radar
locations. The synthetic PAR radial velocity observations are

generated every 1 min using 3608 azimuth scan. Each volume
scan consists of 14 predefined elevation angles, that is, 0.58,
1.58, 2.48, 3.48, 4.38, 5.38, 6.28, 7.58, 8.78, 10.08, 12.08, 14.08, 16.78,
and 19.58, which is the WSR-88D predefined Volume Cover-
age Pattern 11 (VCP 11). Xu et al. (2008) indicated that
assimilation performance and model forecasts are not
improved by making spatial resolution of radar observations
higher than the model resolution. Therefore, in this study
observations on each tilt are interpolated to the model hori-
zontal grid locations for assimilation, same as Pan et al.
(2018). That is radar observations are on the model grid loca-
tion in the horizontal direction and on the radar tilt in the ver-
tical direction. The highest-allowed observation height for
clear-air radial velocity is 7 km above ground level (AGL)
(Zrnić et al. 2019). There are ∼210 000 PAR radial velocity
observations for each radar assimilated in each DA cycle.

For the observation error of radial velocity, Dowell et al.
(2004) used an observation error standard deviation of 2 m s21

in their study, which has been widely used in the radar DA
community (e.g., Yussouf et al. 2013; Johnson et al. 2015;
Wang and Wang 2017). Dowell et al. (2004) found that using
observation error standard deviations of either 3 or 4 m s21 did
not worsen the verification scores significantly. In this study,
the observation error variance of PAR radial velocity is esti-
mated using the method described in Yu et al. (2007). The
mean velocity estimator variance (Yu et al. 2007) is

var(ŷC) 5 K
M 2 1

[1 2 r2(Ts)]
∑M22

l52(M22)

M 2 1 2 |l|
M 2 1

r2(lTs)
{

1
1

SNR2 1
1

SNR
1 2

M 2 2
M 2 1

r(2Ts)
[ ]⎫⎪⎪⎬⎪⎪⎭, (3)

where var(ŷC) is the variance of mean velocity estimator, M is
the sample number, Ts is pulse repetition time (PRT), r() is
the normalized correlation coefficient of weather signals as a
function of PRT, SNR is the signal-to-noise ratio, and
K5 k2=[32p2T2

s r
2(Ts)], with k being the radar wavelength. In

Huang et al. (2020), an observation error standard deviation
of 4 m s21 is used for clear-air radial velocity observations
based on Eq. (3). This error estimate is believed to be a high-
end estimate, consistent for a scenario of a long PRT for
multifunction radar where only a portion of the scan timeline
is devoted to weather observations. In this paper, an observa-
tion error standard deviation of 2 m s21 is used, which is more
consistent with a “middle-of-the-road” estimate. In such sce-
nario, a shorter PRT is used. PAR is mostly (or entirely) used
for weather observations, and signal processing techniques
such as beam multiplexing are used to achieve better data
quality (Mahre et al. 2020). Note that sensitivity experiments
using observation error standard deviation of 4 m s21 were
conducted, and the verification scores did not worsen espe-
cially in the elevated CI case.

c. Experiment design

A 50-member ensemble with a perfect model assumption is
generated for OSSEs. Initial ensemble diversity is created by
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FIG. 1. Composite radar reflectivity (shaded) of the truth simulation for (a1)–(a3) surface-based case from t 5 16 to 20 min in 2-min
intervals and for (c1)–(c3) elevated case from t5 20 to 30 min in 5-min intervals. Also shown are height–x cross sections of radar reflectiv-
ity (shaded) and horizontal wind divergence (u/x 1 y/y; black contours 5 23, 21, 1, and 3 3 1023 s21, with dashed contours being
negative values) along the dashed lines shown in (a1)–(a3) and (c1)–(c3) through the maximum composite radar reflectivity in the truth
simulation for (b1)–(b3) surface-based and (d1)–(d3) elevated cases. The red plus sign indicates the center of the model domain, the
magenta circles denote the locations of surface mesonet observations, and the blue times signs indicate the locations of the radar in the
south and east. Minor tick marks are included every 2 km, and major tick marks are included every 10 km.
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perturbing u and y wind fields using uncorrelated Gaussian per-
turbation from the surface up to 11 km height at the initial time.
The standard deviation of the perturbations is 4 m s21 from the
surface up to 11 km height and linearly decreasing to 0 m s21 at
the 13 km height, which is the same as Huang et al. (2020). There
are therefore also differences between the truth simulation and
the ensembles outside of the region of perturbed y winds.

An ensemble adjustment Kalman filter (Anderson 2001) from
the Data Assimilation Research Testbed (DART; https://dart.
ucar.edu; Anderson et al. 2009) is adopted for DA. Horizontal
and vertical spatial covariance localization (Gaspari and Cohn
1999) with a 60- and 3-km cutoff radius, respectively, are used
for surface observations (Sobash and Stensrud 2015), and with
6- and 3-km cutoff radius, respectively, for PAR radial velocity
observations (Dowell et al. 2011). Meanwhile, to counteract the
spread values decreasing tendency during assimilation update,
an adaptive prior inflation (Anderson 2009) is used. The initial
values to set for the inflation and inflation standard deviation are
1.0 and 0.8, respectively. The lower bounds of the inflation and
inflation standard deviation are set to 1 and 0.8, respectively.
The inflation damping is set to a value of 0.9. The variables
updated by the DA include three components of wind (u, y,

and w), geopotential height, potential temperature, pressure,
and mixing ratio of water species.

The control experiment (CRTL) conducts no DA and
applies the forcing term of Eq. (1) to the y wind and coeffi-
cient g based on Eq. (2) starting from t 5 5 to 11 min because
of the perfect model assumption. To explore the potential
value of assimilating PAR clear-air radial velocity observa-
tions to CI forecasts, six additional experiments are per-
formed in addition to CTRL. The timelines for these six
experiments are shown in Fig. 2. The experiment marked as
Sfc is the same as CTRL except that surface observations are
assimilated every 5 min from t5 5 to 15 min. The experiments
SfcRadS5 and SfcRadSE5 are the same as Sfc except that
additional radial velocity observations respectively from the
southern radar only and both the southern and eastern radars
are assimilated every 5 min from t 5 5 to 15 min. The experi-
ments SfcRadS1 and SfcRadSE1 are the same as SfcRadS5
and SfcRadSE5, respectively, except that radial velocity
observations are assimilated every 1 min from t 5 5 to 15 min
to investigate the benefits of assimilating high frequency
radial velocity data. To further review the impact of PAR
clear-air radial velocity assimilation, the final experiment

FIG. 2. Timelines of the DA experiments assimilating observations from t5 5 to 15 min (10-min DA period). The
model forecasts go from the end of the DA windows (t5 15 min) to t5 30 min. See the text for details.
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RadSE1 is conducted. RadSE1 is the same as SfcRadSE1,
except that no surface observations are assimilated in
RadSE1. The free forecasts in all the experiments are started
from t 5 15 to 30 min. Through comparing the observation-
space root-mean-square innovation and total ensemble spread
(standard deviation) for assimilated radial velocity observa-
tions in both surface-based and elevated CI cases (Figs. S1
and S2 in the online supplemental material), in general, the
consistency ratios (Dowell et al. 2004) of ∼1.04 in the
experiments assimilating radial velocity every 1 min are
close to the perfect value of 1. The ensembles in the experi-
ments assimilating radial velocity every 5 min are slightly
overdispersive with a consistency ratio of ∼1.12, which is
within the range of similar radar DA studies (e.g., Dowell et al.
2004; Yussouf et al. 2013; Huang et al. 2020).

d. Extended fractions skill score

The extended fractions skill score (FSS) (Duc et al. 2013) is
adopted to evaluate the forecast skill of the ensemble fore-
casts. The extended FSS is an extension of the original neigh-
borhood verification method (FSS; Roberts and Lean 2008)
with the ensemble dimension included. To attain extended
FSS, the observed and forecast fraction of each neighborhood
grid box Pf and Po are computed first:

Po(i, j) 5 1
n2

∑i1n=2

ii5i2n=2

∑j1n=2

jj5j2n=2

Io(ii, jj) and (4)

Pf (i, j) 5 1
n2m

∑i1n=2

ii5i2n=2

∑j1n=2

jj5j2n=2

∑m
kk51

If (ii, jj,kk), (5)

where n is the size of square-shaped neighborhood and m is the
number of ensemble members (m 5 50 in this study). Here,
Io and If are binary variables with their values of 1 corresponding
to events being observed and forecast, respectively, and 0 other-
wise. A CREF threshold of 35 dBZ is used to calculate Io and If.
A square-shaped neighborhood with a width of 8 times horizon-
tal grid spacing (4-km side half-length; Huang et al. 2020) is con-
sidered. Then, the extended FSS is given by

FSS 5 1 2

1
NxNy

∑Nx

i51

∑Ny

j51

[Pf (i,j) 2 Po(i, j)]2

1
NxNy

∑Nx

i51

∑Ny

j51
[P2

f (i, j) 1 P2
o(i, j)]

, (6)

where Nx and Ny are the number of grid points in the x and
y axis in the examined domain, respectively. The FSS range is
between 0 and 1, with no forecast skill when FSS5 0 and per-
fect forecast when FSS5 1.

3. Results

a. Surface-based CI case

1) FORECAST SKILL EVALUATION

Figure 3 shows the extended FSS of ensemble forecasts
from t 5 15 to 30 min in 1-min intervals for the surface-based

CI case. CTRL and Sfc do not have grid points indicating CI
(i.e., FSS . 0) until t 5 22 min, which is 6 min later than the
truth simulation (t 5 16 min). Their FSSs are very close and
reach ∼0.7 at t 5 30 min. This result indicates assimilating sur-
face mesonet observations alone has little impact on the simu-
lated CI process. Starting from t 5 17 min, all experiments
assimilating clear-air radial velocity observations have higher
FSSs than CTRL and Sfc. They all have almost perfect fore-
casts with FSS 5 ∼1 starting t 5 20 min. Therefore, assimilat-
ing clear-air radial velocity observations can significantly
improve the CI forecast in this surface-based case. After
assimilating the clear-air radial velocity observations from the
southern radar, both SfcRadS5 (FSS 5 ∼0.075) and SfcRadS1
(FSS 5 ∼0.3) have captured CI grid points with the same CI
timing as the truth simulation (t 5 16 min). At t 5 17 min,
both SfcRadS5 and SfcRadS1 have high CI forecast skills with
FSSs not less than 0.6, especially SfcRadS1 with FSS 5 ∼0.8.
Before t 5 20 min, SfcRadS1 has higher FSSs than SfcRadS5
and SfcRadSE1 has higher FSSs than SfcRadSE5, indicating
assimilating higher time-frequency clear-air radial velocity
observations can attain higher FSSs in this surface-based case.
With an additional radar, SfcRadSE1 and SfcRadSE5 do not
perform significantly better than experiments using one south-
ern radar (SfcRadS1 and SfcRadS5). The differences in
dynamic fields will be examined in later sections to under-
stand the differences in FSSs among these experiments. The
similar forecast skills between SfcRadSE1 and RadSE1 fur-
ther confirm the little impact of assimilating surface mesonet
observations.

2) PROBABILISTIC FORECASTS OF CONVECTION

INITIATION

The probability of CREF $ 35 dBZ in the ensemble fore-
casts of the surface-based case from t 5 16 to 20 min in 1-min
intervals is shown in Fig. 4. No members of Sfc and CTRL
ensemble forecasts can capture the CI process, evidenced by
the probability forecast of 0 from t 5 16 to 20 min
(Figs. 4a2–e2) consistent with FSS 5 0 (Fig. 3). The other
experiments assimilating PAR clear-air radial velocity data all
begin to capture the CI process from t 5 17 min and beyond

FIG. 3. Extended FSSs of CTRL, Sfc, SfcRadS5, SfcRadS1,
SfcRadSE5, SfcRadSE1, and RadSE1 ensemble forecasts from
t5 15 to 30 min in 1-min intervals for the surface-based CI case.
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(Figs. 4a3–e7). Some members of SfcRadS5, SfcRadS1 and
RadSE1 are able to predict CI even earlier at t 5 16 min, the
same CI onset time as in the truth. SfcRadS1 performs the best
in capturing the CI at t 5 16 min with a greater probability

(Figs. 4a3,a4,a7). Beginning at t 5 19 min, the probability
over 95% cover almost the entire swaths of CREF $ 35 dBZ
of the truth simulation for all experiments assimilating PAR
clear-air observations. The length of this swath’s west–east

FIG. 4. Probability (shaded; %) of CREF$ 35 dBZ in the ensemble forecasts (a1)–(e1) CTRL, (a2)–(e2) Sfc, (a3)–(e3)
SfcRadS5, (a4)–(e4) SfcRadS1, (a5)–(e5) SfcRadSE5, (a6)–(e6) SfcRadSE1, and (a7)–(e7) RadSE1 from t5 16 to 20 min
in 1-min intervals. The black contours represent the CREF 5 35 dBZ in the truth simulation. The red plus signs indicate
the center of the model domain. Minor tick marks are included every 1 km, and major tick marks are included every 4 km.
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axis is ∼14 km at t 5 20 min, belonging to meso-g scale.
Therefore, assimilating clear-air radial velocity observations
can significantly improve the meso-g-scale CI forecast in this
surface-based case.

From the probability difference between SfcRadS1 and
SfcRadS5 (Figs. 5a1–d1), SfcRadS1 has larger probability in
most areas within the truth swath of CREF $ 35 dBZ, indi-
cating more frequently assimilating clear-air radial velocity
observations from the southern radar can improve the CI
forecast in this surface-based case. This result is consistent
with the higher FSSs in SfcRadS1. The slight eastward loca-
tion bias in SfcRadS1 leads to some negative and positive val-
ues of probability difference, respectively, within and outside
the true swath of CREF $ 35 dBZ from t 5 18 to 20 min
(Figs. 5b1–d1). From the difference between SfcRadSE1 and
SfcRadSE5 (Figs. 5a2–d2), similarly most areas have a positive
impact of assimilating higher frequency clear-air radial velocity
observations on CI forecast. Assimilating additional clear-air
radial velocity observations from the eastern radar (SfcRadSE1)
can correct the eastward location bias of SfcRadS1 (Figs. 5a3–d3).
From the difference between SfcRadSE1 and RadSE1
(Figs. 5a4–d4), assimilating surface mesonet observations
slightly reduces the probability within the swath of CREF $

35 dBZ in the truth simulation. This result suggests the surface
observation simulated at the current mesonet spacing is not
helpful in capturing the surface meso-g-scale convergence likely
due to its coarse resolution.

3) WIND AND CONVERGENCE FIELDS

To investigate the impacts of assimilating clear-air radial
velocity observations and the differences among various
experiments, dynamic fields including three-dimensional winds
and horizontal convergence are examined and diagnosed.

At the end of the final DA cycle (t 5 15 min), vertical
velocities are over 2.4 and 10 m s21 at 0.5 and 3.5 km AGL,
respectively, in the truth simulation (Figs. 6a1,b1). Northerly
horizontal winds at 0.5 km AGL (Fig. 6a1) and divergent hor-
izontal winds near the strong vertical velocity center
(Fig. 6b1) with the divergence over 3 3 1023 s21 at 3.5 km
AGL (Fig. 7a) dominate the truth simulation. The maximum
vertical velocity within the model volume in the truth simula-
tion is 10.7 m s21, and the convergence below the strong verti-
cal motion center and divergence above the strong vertical
motion center both exceeds 33 1023 s21 (Fig. 7a).

CTRL contains maximum absolute errors of horizontal
velocity, vertical velocity, and horizontal divergence over 9.5,
1.9 m s21, and 13 1023 at 0.5 km AGL and over 9.1, 10 m s21,
and 3 3 1023 s21 at 3.5 km AGL, respectively (Figs. 6a2,b2
and 7b). Maximum absolute errors of both horizontal conver-
gence and divergence in CTRL are over 3 3 1023 s21 in the
lower and upper levels, and maximum vertical velocity within
the model volume is 1.5 m s21 and is weaker than the truth.
Assimilating only surface mesonet observations (Sfc) has little
impact on correcting these errors (Figs. 6a3,b3 and 7b). After
assimilating additional clear-air radial velocity from the south-
ern radar every 5 min (SfcRadS5), the winds are significantly
improved with maximum absolute errors of vertical velocity

reduced to ∼0.9 and ∼4.9 m s21 at 0.5 and 3.5 km AGL,
respectively (Figs. 6a4,b4). The maximum vertical velocity
within the model volume in SfcRadS5 reaches 8.8 m s21

(Figs. 6a4 and 7d), and the area coverage with absolute
errors of divergence fields in SfcRadS5 over 1 3 1023 s21 is
clearly reduced (Fig. 7d) relative to those in Sfc (Fig. 7c),
which is consistent with the higher FSSs in SfcRadS5 (Fig. 3).
Although the DA also updates the vertical velocity fields, the
model’s response to the DA dominates the vertical velocity
evolution (not shown).

Relative to SfcRadS5 (Figs. 6a4), wind errors, especially
u wind errors near the strong vertical motion center and
domain center in SfcRadS1, are somewhat increased at
0.5 km AGL with maximum absolute errors of vertical veloc-
ity larger than 1 m s21 (Fig. 6a5). Consistently, the areas with
absolute divergence anomaly over 1 3 1023 s21 are slightly
larger in SfcRadS1 than those in SfcRadS5 below 2 km AGL,
and the errors in the x component of horizontal divergence
are dominant (Fig. 7e). The wind fields at 3.5 km AGL in
SfcRadS1 are slightly improved with smaller areas of absolute
errors of vertical velocity over 4 m s21 (Fig. 6b5). Diagnostics
suggest that the ability of the ensemble to capture the covari-
ance between radial velocity of the southern radar and
u winds near strong updraft center is limited (not shown),
resulting in large analysis errors of u winds in SfcRadS5
(Figs. 6a4 and 7d). This is expected based on the radar view-
ing geometry where y winds are aligned more closely to the
radar beam than u winds. These analysis errors increase with
an increasing assimilation frequency as shown in SfcRadS1
(Figs. 6a5 and 7e). However, the larger analysis errors in
divergence fields in the lower levels (Figs. 7d,e) result in verti-
cal velocity aloft closer to the truth in the strong updraft cen-
ter of the truth. This result is especially the case for SfcRadS1
with maximum vertical velocity of 10.8 m s21 within the
model volume. These results indicate that the improvement
of SfcRadS1 relative to SfcRadS5 does not result from the
more accurate analysis of meso-g-scale horizontal conver-
gence but from closer vertical updraft to the truth as a result
of the larger u-wind biases.

After assimilating additional clear-air radial velocity from
the eastern radar (SfcRadSE5 and SfcRadSE1), horizontal
wind errors are reduced, particularly in the region near the
strong vertical velocity center, relative to SfcRadS5 and
SfcRadS1 (Figs. 6a4–a7,b4–b7). The improvement is also
shown in divergence fields especially their x components in
SfcRadSE5 and SfcRadSE1 (Figs. 7f,g). This result indicates
that u winds can be corrected by assimilating clear-air radial
velocity from additional radar located to the east of the storm,
which is consistent with the smaller location biases in
SfcRadSE5 and SfcRadSE1 (Fig. 5). When the radial velocity
of the eastern radar is assimilated, y winds can be incre-
mented. This increment is through ensemble covariance of
the u and y winds. If such ensemble covariance is inaccurate
or spurious, the y wind may be contaminated, which can result
in enhanced y wind analysis errors in SfcRadSE5 and
SfcRadSE1 (Figs. 6a6,a7 and 7f,g). Radial velocity from oper-
ational radars typically contains very limited contribution
from w wind especially for low elevation angles near the
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surface. However, larger u-wind biases in SfcRadS5 and
SfcRadS1 lead to stronger convergence in the lower levels
and vertical updrafts in the updraft center of the truth than in
SfcRadSE5 and SfcRadSE1, respectively (Figs. 6a4–a7,b4–b7),
resulting in more accurate CI timing in SfcRadS5 and
SfcRadS1 (Figs. 4a3–a6). Therefore, FSSs in SfcRadS5 and

SfcRadS1 are higher than those in SfcRadSE5 and SfcRadSE1
at the early stage of convection (Fig. 3). Meanwhile,
SfcRadSE1 has a slightly better analysis than SfcRadSE5 in
terms of wind and divergence fields, indicating the benefits
of assimilating high frequency clear-air radial velocity
observations from both radars. The small differences in

FIG. 5. Probability differences of CREF $ 35 dBZ (a1)–(d1) between SfcRadS1 and SfcRadS5, (a2)–(d2) between SfcRadSE1 and
SfcRadSE5, (a3)–(d3) between SfcRadSE1 and SfcRadS1, and (a4)–(d4) between SfcRadSE1 and RadSE1 from t5 17 to 20 min in 1-min
intervals. The black contours represent the CREF 5 35 dBZ in the truth simulation. The red plus signs indicate the center of the model
domain. Minor tick marks are included every 1 km, and major tick marks are included every 4 km.
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FIG. 6. Horizontal wind vectors and vertical velocity (shaded; m s21) in the truth simulation at (a1) 0.5 and (b1) 3.5 km AGL at
t 5 15 min. Also shown are the differences of horizontal wind vectors and vertical velocity (shaded; m s21) from the truth simula-
tion for ensemble means of (a2),(b2) CTRL; (a3),(b3) Sfc; (a4),(b4) SfcRadS5; (a5),(b5) SfcRadS1; (a6),(b6) SfcRadSE5;
(a7),(b7) SfcRadSE1; and (a8),(b8) RadSE1 at 0.5 [in (a2)–(a8)] and 3.5 [in (b2)–(b8) ] km AGL. Blue contours in (a4)–(a8) indi-
cate differences of u winds from the truth (contours 5 21, 20.5, 0.5, and 1 m s21, with dashed contours being used for negative
values). The red plus signs indicate the center of the model domain. The magenta times signs and blue plus signs represent the
horizontal locations of maximum vertical velocity (corresponding color-coded figures) within the model volume in the truth
simulation and sensitivity experiments, respectively. Minor tick marks are included every 1 km, and major tick marks are included
every 4 km.
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wind (Figs. 6a7,a8,b7,b8) and divergence fields (Figs. 7g,h)
between SfcRadSE1 and RadSE1 reveal the little impact of
assimilating surface mesonet observations on the CI fore-
casts again.

b. Elevated CI case

1) FORECAST SKILL EVALUATION

Figure 8 shows the extended FSS of ensemble forecasts
from t 5 15 to 30 min in 1-min intervals for the elevated CI
case. CTRL and Sfc completely miss the CI by t 5 30 min
throughout the entire forecast period with FSS 5 0. All
experiments assimilating clear-air radial velocity observations
significantly improve CI forecasts. SfcRadS1 performs the
best overall with its FSSs not less than 0.9 from t 5 20 to
30 min. SfcRadS5 (FSS 5 ∼0.66), SfcRadS1 (FSS 5 ∼0.9) and
SfcRadSE5 (FSS 5 ∼0.33) all begin to capture the CI at the
same first CI time as the truth simulation (t 5 20 min) with
SfcRadS1 has the highest skill (FSS 5 ∼0.9) followed by
SfcRadS5 (FSS 5 ∼0.66). From t 5 20 to 22 min, SfcRadS1

has higher FSS than SfcRadS5, while SfcRadS1 has compara-
ble or slightly worse skills after t 5 22 min. Surprisingly,
SfcRadSE5 has significantly higher CI forecast skill than
SfcRadSE1 by t5 27 min while SfcRadSE1 has slightly higher
skill after that. Generally, SfcRadS5 has higher FSSs than
SfcRadSE5 and SfcRadS1 has higher FSSs than SfcRadSE1
from t 5 20 to 26 min except that SfcRadSE5 has higher FSS
than SfcRadS5 at t 5 21 min. Higher FSSs can be attributed
to more accurate prediction of CI timing, location, or both.
As in the surface-based CI case, differences in probabilistic
forecasts and analysis dynamic fields will be examined in later
sections to understand the different skill improvements
among the experiments. SfcRadSE1 has slightly higher FSSs
than RadSE1 from t 5 21 to 30 min, indicating that assimilat-
ing surface mesonet observations has a slightly positive
impact on this elevated CI forecast. However, the impact is
much smaller relative to assimilating clear-air radar data. The
similarity and differences of the statistical results between the
surface-based and elevated CI cases are discussed in later
sections.

FIG. 7. (a) Height–x cross sections, along the maximum vertical velocity center in the truth simulation shown in Fig. 6 by magenta times
signs, of horizontal wind divergence (u/x 1 y/y; black contours 5 23, 21, 1, and 3 3 1023 s21, with dashed contours being used for
negative values), its x component (u/x; blue contours5 23, 21, 1, and 3 3 1023 s21, with dashed contours being used for negative val-
ues) and y component (y/y; magenta contours5 23,21, 1, and 33 1023 s21, with dashed contours being used for negative values) and
vertical velocity (shaded; m s21) in the truth simulation at t 5 15 min. Also shown are height–x cross sections of vertical velocity (shaded;
m s21) and the differences of horizontal wind divergence (black contours5 23,21, 1, and 33 1023 s21, with dashed contours being used
for negative values), its x components (blue contours523,21, 1, and 33 1023 s21, with dashed contours being used for negative values),
and its y components (magenta contours 5 23, 21, 1, and 3 3 1023 s21, with dashed contours being used for negative values) from the
truth simulation for ensemble means of (b) CTRL, (c) Sfc, (d) SfcRadS5, (e) SfcRadS1, (f) SfcRadSE5, (g) SfcRadSE1, and (h) RadSE1.
Minor x tick marks are included every 1 km, and major x tick marks are included every 4 km.

MONTHLY WEATHER REV I EW VOLUME 1501574

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/06/22 06:46 PM UTC



2) PROBABILISTIC FORECASTS OF CONVECTION

INITIATION

The probability of CREF $ 35 dBZ in the ensemble fore-
casts of the elevated case at t 5 20, 21, 22, 25, and 30 min is
shown in Fig. 9. No members of ensemble forecasts in CTRL
and Sfc capture the CI process with the probability of 0 by
t 5 30 min (Figs. 9a1–e2) consistent with their FSS 5 0
(Fig. 8). Similar to the surface-based CI case, all other experi-
ments assimilating clear-air radial velocity data predict the CI
process successfully at certain forecast lead time (Figs.
9a3–e7). These results indicate assimilating clear-air radial
velocity data can basically capture the meso-g-scale conver-
gence in both cases. In contrast with the surface-based case,
there are more CI grid points outside of the true swaths of
CREF$ 35 dBZ (Figs. 9a3–e5), indicating more location bias
of the prediction due to longer development of the CI process
in the elevated case (Fig. 1). Consistent with FSSs shown in
Fig. 8, some members in SfcRadS5 and SfcRadS1 predict CI
at t 5 20 min. This is the same as the first CI timing in the
truth (Figs. 9a3,a4), which is similar to the surface-based case
except with larger CI location biases. Some members in
SfcRadSE5 capture early CI process at t 5 20 min in the ele-
vated case despite a location bias (Fig. 9a5). The improved
performance of SfcRadSE5 for the elevated CI case may
benefit from more vertical updraft component captured by
radar radial winds with larger elevation angles. Similar to the
surface-based case, CI in SfcRadSE1 in the elevated case is
1 min later than the truth (Fig. 9b6). At t5 30 min, the proba-
bility over 95% in all experiments assimilating clear-air radial
velocity data match the swath of CREF$ 35 dBZ in the truth
simulation very well (Figs. 9e3–e7). However, SfcRadS5,
SfcRadS1, and SfcRadSE5 show more apparent eastward
location bias (Figs. 9e3,e4), implying larger u-wind biases in
these experiments. The length of this swath’s west–east axis is
∼17 km at t 5 30 min, belonging to meso-g scale. Therefore,
similar to the surface-based CI case, assimilating clear-air
radial velocity observations can also significantly improve the
meso-g-scale CI forecast in this elevated case.

From the probability difference between SfcRadS1 and
SfcRadS5 (Figs. 10a1–d1), SfcRadS1 has larger probability in
most areas within the swath of CREF $ 35 dBZ in the truth
simulation by t 5 22 min, indicating that assimilating higher

frequency clear-air radial velocity observations can improve
the CI forecast during early stages. The positive and negative
differences located to the east and west sides of the proba-
bility swath, respectively, from t 5 25 to 30 min are due to
more eastward location bias in SfcRadS1 than in SfcRadS5
(Figs. 10c1–d1). These results are similar to those in the
surface-based case (Figs. 5a1–d1). From the difference
between SfcRadSE1 and SfcRadSE5, most areas within the
true swath of CREF $ 35 dBZ contain negative values of
probability difference by t5 22 min (Figs. 10a2–b2) as a result
of 1-min CI timing bias in SfcRadSE1 relative to SfcRadSE5.
After t 5 25 min (Figs. 10c2–d2), the negative probability dif-
ferences are mainly outside and to the east of the swath, indi-
cating that assimilating clear-air radial velocity observations
from both radars at higher frequency produces more accurate
location prediction than at lower frequency. Differences
between SfcRadSE1 and SfcRadS1 (Figs. 10a3–d3) resembles
those between SfcRadSE1 and SfcRadSE5 (Figs. 10a2–d2),
implying location biases can be reduced mainly by assimilat-
ing radial velocity data from the eastern radar at higher fre-
quency. Assimilating extra surface mesonet observations can
only slightly improve the CI forecast with small positive prob-
ability differences (Figs. 10a3–d3).

3) WIND AND CONVERGENCE FIELDS

Three-dimensional winds and horizontal convergences are
examined to explain the differences in FSSs and probabilistic
forecasts among different experiments.

At the end of the final DA cycle (t5 15 min) in the elevated
case, maximum vertical velocities are over 1 and 4 m s21 at 1.5
and 3.5 km AGL, respectively, and reach 4.7 m s21 within the
model volume in the truth simulation (Figs. 11a1,b1), which are
weaker than those in the surface-based case (Figs. 6a1,b1). More
latent heat release below 1.5 km AGL results in stronger buoy-
ancy in the lower levels in the surface-based case. The truth sim-
ulation displays obvious horizontally convergent winds at 1.5 km
AGL (Fig. 11a1) with the maximum convergence stronger
than 1 3 1023 s21 near the strong updraft center (Fig. 12a).
This convergence mainly results from the y component of con-
vergence (Fig. 12a). At 3.5 km AGL in the truth simulation,
there exist horizontally divergent winds near the strong verti-
cal velocity center with the maximum divergence over 1 3

1023 s21 (Figs. 11b1 and 12a), which is weaker than that in the
surface-based case (Figs. 6b1 and 7a). The weaker conver-
gence in the lower levels, weaker divergence in the upper lev-
els, and weaker vertical updrafts are all due to the weaker
buoyancy, resulting in slower development of convection in
the elevated case than the surface-based case (Fig. 1).

The deviations of CTRL and Sfc from the truth are very
similar in both wind and divergence fields. The maximum
absolute errors of vertical velocity are over 1 and 4 m s21 at
1.5 and 3.5 km AGL, respectively. The maximum absolute
errors of divergence are over 1 3 1023 s21 at both 1.5 and
3.5 km AGL. These results again confirm that assimilating
only surface mesonet observations has little impact on
the wind field and divergence (Figs. 11a2,a3,b2,b3 and
12b,c). After assimilating clear-air radial velocity from the

FIG. 8. As in Fig. 3, but for the elevated CI case.
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southern radar every 5 min in addition to the surface obser-
vations (SfcRadS5), the wind errors are reduced signifi-
cantly near the strong updraft center with maximum
absolute errors of vertical velocity less than 1 and 2 m s21

at 1.5 and 3.5 km AGL, respectively (Figs. 11a4,b4). The
areas with absolute errors of divergence fields in SfcRadS5

over 1 3 1023 s21 are reduced dramatically (Fig. 12d) rela-
tive to those in Sfc (Fig. 12c).

It also can be found that there are larger errors of wind and
divergence fields on the east of updraft center in SfcRadS5
with maximum absolute errors of vertical velocity and diver-
gences larger than 1 m s21 and 1 3 1023 s21, respectively, at

FIG. 9. As in Fig. 4, but for the elevated CI case at t5 20, 21, 22, 25, and 30 min. Minor tick marks are included every
1 km, and major tick marks are included every 5 km.

MONTHLY WEATHER REV I EW VOLUME 1501576

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/06/22 06:46 PM UTC



both 1.5 and 3.5 km AGL (Figs. 11a4,b4 and 12d). The larger
errors in u winds (Fig. 11a4) result in eastward CI location
biases in SfcRadS5 shown in Figs. 9a3–e3. These errors
increase in SfcRadS1 with larger areas with absolute u-wind
errors more than 1 m s21, maximum absolute errors of verti-
cal velocity larger than 2 m s21 at 1.5 km AGL (Fig. 11a5),
and larger areas with absolute divergence anomaly over 1 3

1023 s21 below 2 km AGL (Fig. 12e), which results in larger

location biases of convection in SfcRadS1 shown in
Figs. 9a4–e4 and 10a1–d1. Similar to the surface-based case,
the ensemble cannot capture the covariance between radial
velocity of the southern radar and u winds near the strong
updraft center well (not shown), due to the cross-beam nature
of these winds. Therefore, larger u-wind biases exist in
SfcRadS5 (Figs. 11a4,b4), and the biases increase with the
greater assimilation frequency in SfcRadS1 (Figs. 11a5,b5).

FIG. 10. As in Fig. 5, but for the elevated CI case at t5 21, 22, 25, and 30 min. Minor tick marks are included every 1 km, and major tick
marks are included every 5 km.
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However, these u-wind errors lead to stronger convergence in
the lower levels (Fig. 12e) and maximum vertical updrafts
closer to the truth (Fig. 12e), making CI timing closer to the
truth simulation. The closer CI timing to the truth results in
higher FSSs in SfcRadS1 than SfcRadS5 at the beginning of
CI process by t 5 23 min (Fig. 8). Meanwhile, the u-wind
errors also result in larger location biases at the later stage,

leading to slightly lower FSSs in SfcRadS1 than SfcRadS5
after t 5 23 min (Fig. 8). Therefore, similar to the surface-
based case, the higher FSSs in SfcRadS1 are not due to the
more accurate analysis of meso-g-scale horizontal conver-
gence. Although the DA also updates the vertical velocity
fields, the model’s response to the DA dominates the vertical
velocity evolution (not shown).

FIG. 11. As in Fig. 6, but for the elevated CI case at (a1)–(a8) 1.5 and (b1)–(b8) 3.5 km AGL.

MONTHLY WEATHER REV I EW VOLUME 1501578

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 10/06/22 06:46 PM UTC



After assimilating additional clear-air radial velocity
from the eastern radar (SfcRadSE5 and SfcRadSE1), errors
in horizontal wind and divergence fields are reduced, parti-
cularly near the strong updraft center, relative to SfcRadS5
and SfcRadS1 (Figs. 11a4–a7,b4–b7 and 12d–g). The errors
on the east side of the strong updraft center are also
reduced, indicating that u winds can be corrected by assimi-
lating clear-air radial velocity from the eastern radar.
Meanwhile, assimilating high-time-frequency clear-air
radial velocity observations in SfcRadSE1 has better u-
wind analysis than SfcRadSE5. Therefore, smaller location
biases are in SfcRadSE5 than SfcRadS5, SfcRadSE1 than
SfcRadS1, and SfcRadSE1 than SfcRadSE5 (Fig. 10). Simi-
larly, larger u-wind biases in SfcRadSE5 than SfcRadSE1
due to assimilating lower-time-frequency radial velocity
from the eastern radar result in stronger x-component conver-
gence in the lower levels and updrafts (Figs. 12f,g), and closer
CI timing to the truth but larger location biases, which is con-
sistent with higher FSSs by t 5 27 min and slightly lower FSSs
after t 5 27 min in SfcRadSE5 than SfcRadSE1 (Fig. 8). How-
ever, assimilating clear-air radial velocity from the eastern
radar increases the analysis errors in y winds in the lower lev-
els in SfcRadSE5 and SfcRadSE1 due to the limited ability of
the ensemble to capture the covariance between radial veloc-
ity of the eastern radar and y winds near strong updraft center
(Figs. 12f,g). These errors are stronger in SfcRadSE1 than
SfcRadSE5 leading to stronger divergence and weaker updraft

in SfcRadSE1 (Figs. 12f,g), so CI timing is earlier in SfcRadSE5.
No obvious differences in wind (Figs. 11a7,a8,b7,b8) and diver-
gence fields (Figs. 12g,h) between SfcRadSE1 and RadSE1 are
found. Different from the surface-based CI case, assimilating
surface observations in addition to radial velocity observa-
tions can slightly improve the CI forecast in the elevated case
(Figs. 8 and 10a4–d4). Diagnostics suggest that the surface
observation with mesonet resolution captures the relatively
large-scale characteristics near the surface while the maximum
meso-g-scale convergence occurs at 1.5 km AGL.

4. Summary

In this study, observing system simulation experiments are
conducted to study the potential benefits of assimilating PAR
clear-air radial velocity observations to the forecast of CI
along small-scale boundary layer convergence zones. To
examine whether high spatiotemporal resolution PAR clear-
air radial velocity observations can partly fill the gaps in the
current operational observing systems, two typical types of
CI, surface-based and elevated CI cases driven by meso-
g-scale boundary layer convergence, respectively, are tested.
Synthetic surface mesonet observations at ∼30-km and 5-min
resolutions and PAR clear-air radial velocity observations at
a 1-min resolution of both surface-based and elevated CI
cases are created using the Weather Research and Forecast-
ing Model. These observations are assimilated over a 10-min

FIG. 12. As in Fig. 7, but for the elevated CI case for (a) truth, (b) CTRL, (c) Sfc, (d) SfcRadS5, (e) SfcRadS1, (f) SfcRadSE5,
(g) SfcRadSE1, and (h) RadSE1. Black, blue, and magenta contours5 21, 20.5, 0.5, and 1 3 1023 s21, with dashed contours being used
for negative values.
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period before the first CI occurrence using an ensemble
Kalman filter method. The main results are summarized as
follows:

1) Assimilating only surface mesonet observations fails to
predict either surface-based or elevated meso-g-scale
CI processes. Although it is hard to determine systematic
positive or negative impacts of assimilating surface meso-
net observations on CI forecasts due to the limited number
of cases in this study, it can be concluded that assimilating
coarse-resolution surface mesonet observations has little
impact on the wind and divergence fields of the analyses in
both surface-based and elevated cases, and therefore has
little impact on the subsequent CI forecasts.

2) All the experiments containing clear-air radial velocity
observations can capture both surface-based and elevated
CI processes successfully, although some experiments
have biases of CI timing and location. Such an improve-
ment benefits from the better analyses of meso-g-scale
boundary layer convergence in both surface-based and
elevated CI cases resulting from assimilating PAR clear-
air radial velocity observations.

3) The experiments assimilating clear-air radial velocity
observations only from the southern radar have higher
forecast scores than those assimilating observations from
both the southern and eastern radars. The forecast scores
associated with assimilating only the southern radar
increase with greater assimilation frequency especially at
the early stage of CI processes. Diagnostics suggest
that the higher forecast scores are attributed to the
larger u-wind biases leading to stronger low-level con-
vergence and updrafts that are closer to the truth. Such
u-wind biases are a result of the inability of the ensemble
to properly represent the covariance between the radial
velocity of the southern radar and u winds near the strong
updraft center. These u-wind biases increase with assimi-
lating radial velocity only from the southern radar more
frequently, leading to faster moving and larger location
errors of convection. Assimilating clear-air radial velocity
observations from both the southern and eastern radars in
particular with higher-time-frequency can improve the
u-wind analysis and then improve the forecast of con-
vection location. However, the analysis errors in y winds
in the lower levels increase similarly when assimilating
clear-air radial velocity from the eastern radar. These
results suggest the need to optimize the radar network
design and to further improve ensemble-based data assim-
ilation for radar observations. Note that densely located
PAR network costs are high. Further, some recent studies
(e.g., Maejima and Miyoshi 2020; et al. 2021) indicated
that when DA parameters were tuned well and a suffi-
ciently large ensemble (e.g., 1000 members in Ruiz et al.
2021) was employed, assimilating dense observations at a
higher frequency improved analysis accuracy by reducing
nonlinearlity and non-Gaussianity. Meanwhile, if the
ensemble size is large enough, the quality of covariance
between the radial velocity observations and the winds
would improve as well and wind analysis bias would be

reduced. Therefore, the results of a single radar from this
study still suggests the potential of PAR on observing the
boundary layer convergence zones to help CI forecasts.

To our knowledge, this study is the first to investigate the
benefits of assimilating PAR clear-air radial velocity observa-
tions to improve the forecast of CI along small-scale boundary
layer convergence zones. The results highlight the potential
for assimilating these observations to improve CI forecasts.
Note that only idealized CI cases determined by the conver-
gence of wind fields are considered with perfect model
assumption in this study. Only horizontal winds are perturbed
to create ensemble members initialized with a horizontally
homogeneous base state, and temperature and humidity fields
are assumed to be perfect at the initial time. We are aware
that, the conclusions obtained in this study are based on these
idealized-case OSSEs and the assumption of a perfect model.
A realistic scenario including heterogeneous atmospheric
environment, combination of different CI mechanisms, differ-
ent radar networks, uncertainties on various scales, as well as
the model error, may reduce the potential value of assimilat-
ing PAR clear-air radial velocity observations on CI forecasts.
However, this study provides insights on the relative impact
of PAR clear-air radial velocity and surface mesonet observa-
tions. It therefore reveals the potential benefit of PAR clear-
air radial velocity observations on CI forecasts in NWP sys-
tem filling the gaps in current operational observing systems
where high-resolution upper-air observations especially in
planetary boundary layer are lacking. In the future, real-case
studies, such as real PAR data cases and/or OSSEs created
from more realistic CI simulations (e.g., high-resolution dry-
line or frontal boundary simulation), should be conducted to
verify the conclusions attained in this study.
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